18 research outputs found

    Analytical screening of organic chemicals of emerging concern in western Kenya and their contribution to the prevalence of schistosomiasis

    No full text
    In the past decades, the use and production of chemicals has been on the rise globally due to increasing industrialization and intensive agriculture; resulting in the occurrence and ecotoxicological risks of chemicals of emerging concern (CECs) in the aquatic compartments. Risks include changes in community structure resulting in the dominance of one species and ecosystem imbalance. When dominant disease-causing organisms are in the environment, the disease transmission is increased. For example, host snails for the schistosomiasis, a human trematode disease, are known to be tolerant to pesticide exposure compared to the predators. This would therefore result in an increased abundance of snails which consequently increase the disease transmission in the human population. Kenya, being a low income country faces a lot of challenges with provision of clean water, diseases and sanitation facilities, and increasing population which results in intensive agriculture coupled with pesticide use. Although a lot of research has been carried out on the environmental occurrence and risk of CECs (Chapter 1), most of these studies have been done in developed countries with limited information from Africa. Additionally, research in Africa focused on urban areas with limited number of compounds analyzed and mostly in the water phase, and inadequate information on the effects of CECs on the aquatic organisms. In order to reduce this knowledge gap, this dissertation focused on identification and quantification of CECs present in water, sediment and snails from western Kenya, and the contribution of pesticides to the transmission of schistosomiasis. Chapter 2 gives a summary of the results and discussion of the dissertation. In Chapter 3, a comprehensive chemical analysis was carried out on 48 water samples to identify compounds, spatial patterns and associated risks for fish, crustacean and algae using toxic unit (TU) approach. A total of 78 compounds were detected with pesticides and biocides being the compounds most frequently detected. Spatial pattern analysis revealed limited compound grouping based on land use. Acute risk for crustaceans and algae were driven by one to three individual compounds. These compounds responsible for toxicity were prioritized as candidate compounds for monitoring and regulation in Kenya. In Chapter 4, an extension of Chapter 3 was done to cover the CECs present in snails and sediment from the 48 sites. A total of 30 compounds were found in snails and 78 in sediments with 68 additional compounds being found which were not previously detected in water. Higher contaminant concentrations were found in agricultural sites than in areas without anthropogenic activities. The highest acute toxicity (TU 0.99) was determined for crustaceans based on compounds in sediment samples. The risk was driven by diazinon and pirimiphos-methyl. Acute and chronic risks to algae were driven by diuron whereas fish were found to be at low to no acute risk. In Chapter 5, the effect of pesticide contamination on schistosomiasis transmission was evaluated by applying complimentary laboratory and field studies. In the field studies, the ecological mechanisms through which pesticides and physical chemical parameters affect host snails, predators and competitors were investigated. Pesticide data was obtained from the results in chapter 3. The overall distribution of grazers and predators was not affected by pesticide pollution. However, within the grazers, pesticide pollution increased dominance of host snails. On the contrary, the host-snail competitors were highly sensitive to pesticide exposure. For the laboratory studies, macroinvertebrates including Schistosoma-host snails, competitors and predators were exposed to 6 concentrations levels of imidacloprid and diazinon. Snails showed higher insecticide tolerance compared to competitors and predators. Finally, Chapter 6 summarizes the conclusions of this dissertation, placing it in a broader context. In this dissertation, a comprehensive chemical characterization and risk assessment of CECs has been carried out in freshwater systems; together with the effects of pesticides on schistosomiasis transmission in rural western Kenya. Results of this dissertation showed that rural areas are contaminated posing a risk to aquatic organisms which contribute to schistosomiasis transmission. This shows the need for regular monitoring and policy formulation to reduce pollutant emissions which contributes negatively to both ecological and human health effects

    Multi-compartment chemical characterization and risk assessment of chemicals of emerging concern in freshwater systems of western Kenya

    No full text
    Background: Within the last decades, there has been increasing research on the occurrence of chemicals of emerging concern (CECs) in aquatic ecosystems due to their potential adverse effects on freshwater organisms and risk to human health. However, information on CECs in freshwater environments in sub-Saharan countries is very limited. Here, we investigated the occurrence of CECs in snails and sediments collected from 48 sites within the Lake Victoria South Basin, Kenya, which have been previously investigated for water contamination. Samples were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) with a target list of 429 compounds. Results: In total, 30 compounds have been detected in snails and 78 in sediment samples, compared to 79 previously identified compounds in water. By extending the monitoring of CECs to snails and sediments, we found 68 compounds that were not previously detected in water. These compounds include the anti-cancer drug anastrozole, detected for the first time in the Kenyan environment. Individual compound concentrations were detected up to 480 ng/g wet weight (N-ethyl-o-toluenesulfonamide) in snails and 110 ng/g organic carbon (pirimiphos-methyl) in sediments. Higher contaminant concentrations were found in agricultural sites than in areas not impacted by anthropogenic activities. Crustaceans were the organisms at greatest toxic risk from sediment contamination [toxic unit (TU) up to 0.99] with diazinon and pirimiphos-methyl driving this risk. Acute and chronic risks to algae were driven by diuron (TU up to 0.24), whereas fish were found to be at low-to-no acute risk (TU up to 0.007). Conclusions: The compound classes present at the highest frequencies in all matrices were pesticides and biocides. This study shows substantial contamination of surface water in rural western Kenya. By filling data gaps on contamination of sediments and aquatic biota, our study reveals that CECs pose a substantial risk to environmental health in Kenya demanding for monitoring and mitigation

    Calibration of the SPEARpesticides bioindicator for cost-effective pesticide monitoring in East African streams

    No full text
    BACKGROUND: Pesticides are washed from agricultural fields into adjacent streams, where even short-term exposure causes long-term ecological damage. Detecting pesticide pollution in streams thus requires the expensive monitoring of peak concentrations during run-off events. Alternatively, exposure and ecological effects can be assessed using the SPEARₚₑₛₜᵢcᵢdₑₛ bioindicator that quantifies pesticide-related changes in the macroinvertebrate community composition. SPEARₚₑₛₜᵢcᵢdₑₛ has been developed in Central Europe and validated in other parts of Europe, Australia and South America; here we investigated its performance in East African streams. RESULTS: With minimal adaptations of the SPEARₚₑₛₜᵢcdₑₛ index, we successfully characterized pesticide pollution in 13 streams located in Western Kenya. The East African SPEARₚₑₛₜᵢcᵢdₑₛ index correlated well with the overall toxicity of 30 pesticides (maximum toxic unit = maximum environmental vs. median lethal concentration) measured in stream water (R² = 0.53). Similarly, the SPEARₚₑₛₜᵢcᵢdₑₛ index correlated with the risk of surface run-off from agricultural fields (as identified based on ground slope in the catchment area and the width of protective riparian strips, R² = 0.45). Unlike other bioindicators designed to indicate general water pollution, SPEARₚₑₛₜᵢcᵢdₑₛ was independent of organic pollution and highly specific to pesticides. In 23% of the streams, pesticides exceeded concentrations considered environmentally safe based on European first tiered risk assessment. CONCLUSIONS: Increasing contamination was associated with considerable changes in the macroinvertebrate community composition. We conclude that pesticides need to be better regulated also in developing countries. SPEARₚₑₛₜᵢcᵢdₑₛ provides a straightforward and cost-efficient tool for the required monitoring of pesticide exposure in small to medium streams
    corecore